Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andris J. Liepa, ${ }^{\text {a* Saba }}$
Jahangiri, ${ }^{\text {a }}$ Gary D. Fallon ${ }^{\text {b }}$ and Craig M. Forsyth ${ }^{\text {b }}$

${ }^{\text {a }}$ CSIRO Molecular and Health Technologies, Bag 10 Clayton South, Victoria 3169, Australia, and ${ }^{\mathbf{b}}$ School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia

Correspondence e-mail: andy.liepa@csiro.au

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.091$
Data-to-parameter ratio $=17.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

3-Dimethylamino-1,1-dioxo-4,5,6,7-tetrahydro$1 H-\lambda^{6}$-thia-2,3a,8a-triazacyclopenta[a]inden-8-one, a derivative of a new ring system

The title compound, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$, is the first example of the fused tricyclic octahydro-1-thia-2,3a,8a-triazacyclopenta[a]indene ring system. The S -containing heterocycle adopts a typical envelope conformation, fused at the 2,3-positions to a 2,3a,4,5,6,7-hexahydroindazol-3-one unit.

Comment

The dichloro compound (I) has been demonstrated to undergo attack by 1,2- and 1,3-dinucleophilic species to afford new or otherwise rare heterocycles (Fallon, Francis et al., 2005; Fallon, Jahangiri et al., 2005; Markovskii et al., 1974). The new ring system (III) was prepared from the reaction of dichloride (I) with tetrahydroindazolone (II). The structure of (III) (Fig. 1) confirms the regiochemistry of nucleophilic attack and comprises a tricyclic system with two fused 5 -membered heterocyclic rings, folded by $41.0(6)^{\circ}$ along the $\mathrm{N} 1-\mathrm{N} 2$ bond [defined by the torsion angle $\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1141.13$ (12) ${ }^{\circ}$]. Bond distances and angles (Table 1) are consistent with the assigned bonding (see scheme), with shorter distances for the two double bonds $\mathrm{C} 3=\mathrm{C} 8$ and $\mathrm{C} 2=\mathrm{N} 3$, and the sum of angles around N1 and N2 (341.7 and 336.0°) indicative of pyramidal N atoms. The diazacyclopentenone group is planar [maximum deviation 0.040 (1) A for atom C8], whilst the thiatriaza ring has a typical envelope conformation, with atom S1 lying 0.174 (2) \AA out of the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 2 / \mathrm{N} 3$ least-squares plane. Notably, the N2-S1 bond distance is significantly longer [by 0.115 (3) Å] than the corresponding N3-S1 bond length. However, these values compare well with data for related heterocycles (Friedrichsen et al., 1983).

Received 7 June 2006
Accepted 23 June 2006

Experimental

N, N-Disopropylethylamine ($3.12 \mathrm{~g}, 24 \mathrm{mmol}$) was added dropwise to a mixture of $2,3 \mathrm{a}, 4,5,6,7$-hexahydroindazol-3-one ($1.23 \mathrm{~g}, 9 \mathrm{mmol}$) and the dichloride (I) ($2.4 \mathrm{~g}, 12 \mathrm{mmol}$) in 1,3-dimethyl-3,4,5,6-tetra-hydro- $2(1 H)$-pyrimidinone (6 ml). The solution was stirred overnight, diluted with water $(6 \mathrm{ml})$, filtered and washed with water to give the product ($1.9 \mathrm{~g}, 59 \%$). Recrystallization from dichloromethane/ acetonitrile (1:2) gave colourless needles (m.p. 757-759 K). Analysis found: C 44.5, H 5.3, N 20.9, S 11.9; $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires: C 44.4, H
5.2, N 20.7, $\mathrm{S} 11.9 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.19\left(3 \mathrm{H}, s, \mathrm{NCH}_{3}\right), 3.16$ $\left(3 \mathrm{H}, s, \mathrm{NCH}_{3}\right), 2.67-3.64\left(2 \mathrm{H}, m, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.45-2.42(2 \mathrm{H}, m$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $1.80-1.66\left(4 \mathrm{H}, m, 2 \times \mathrm{CH}_{2}\right)$.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=270.31$
Monoclinic, $P 2_{2_{l}} / c$
$a=8.6327(1) \AA$
$b=16.3610(3) \AA$
$c=8.4883(1) \AA$
$\beta=98.117(1) \AA$
$V=1186.87(3) \AA^{\circ}$

Data collection

Nonius KappaCCD diffractometer
Thick-slice φ or ω scans
Absorption correction: none
17785 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.091$
$S=1.04$
2893 reflections
165 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.513 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.28 \mathrm{~mm}^{-1} \\
& T=123(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.20 \times 0.08 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

> 2893 independent reflections 2182 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.046$
> $\theta_{\max }=28.3^{\circ}$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0435 P)^{2}\right. \\
+0.299] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{gathered}
$$

Figure 1
View of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We acknowledge the Australian Research Council for financial support.

References

Fallon, G. D., Francis, C. L., Johansson, K., Liepa, A. J. \& Woodgate, R. C. J. (2005). Aust. J. Chem. 58, 891-900.

Fallon, G. D., Jahangiri, S., Liepa, A. J. \& Woodgate, R. C. J. (2005). Aust. J. Chem. 58, 332-338.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Friedrichsen, W., Bottcher, A. \& Debaerdemaeker, T. (1983). Heterocycles, 20, 845-848.
Markovskii, L. N., Shermolovich, Y. G. \& Shevchenko, V. I. (1974). J. Org Chem USSR (Engl. Transl.). 10, 492.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Andris J. Liepa, ${ }^{\text {a }}$ Saba
Jahangiri, ${ }^{\text {a }}$ Gary D. Fallon ${ }^{\text {b }}$ and Craig M. Forsyth ${ }^{\text {b }}$
${ }^{\text {a }}$ CSIRO Molecular and Health Technologies, Bag 10 Clayton South, Victoria 3169, Australia, and ${ }^{\mathbf{b}}$ School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia

Correspondence e-mail: andy.liepa@csiro.au

3-Dimethylamino-1,1-dioxo-4,5,6,7-tetrahydro$1 H-\lambda^{6}$-thia-2,3a,8a-triazacyclopenta[a]inden-8-one, a derivative of a new ring system. Corrigendum

In the paper by Liepa, Jahangiri, Fallon \& Forsyth [Acta Cryst. (2006), E62, o3170-o3171], there is an error in the reaction scheme. The correct scheme is given below.

